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We present a nonequilibrium approach for the study of a two-dimensional phase-separating ternary mixture.
When the component that promotes phase separation is dynamically exchanged with the medium, the separa-
tion process is halted and actively maintained finite-size segregation domains appear in the system. In addition
to this effect, already reported in our earlier work �J. Gómez, F. Sagués, and R. Reigada, Phys. Rev. E 77,
021907 �2008��, the use of a generic Ginzburg-Landau formalism and the inclusion of thermal fluctuations
provide a more dynamic description of the resulting domain organization. Its size, shape, and stability prop-
erties are studied. Larger and more circular and stable domains are formed when decreasing the recycling rate,
increasing the mobility of the exchanged component, and the mixture is quenched deeper. We expect this
outcome to be of applicability in raft phenomenology in plasmatic cell membranes.
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I. INTRODUCTION

Domain formation in multicomponent soft-matter systems
is commonly associated with the existence of dissimilar af-
finities between the components. In equilibrium, emerging
structures are characterized by a wavelength dictated exclu-
sively by the competition between the different molecular
interactions �1�. In contrast, nonequilibrium labile condensed
systems may show actively maintained patterns whose length
scale results from the competition of thermodynamic forces
�molecular interactions� and kinetic parameters accounting
for transport and relaxation processes �2�. Pattern formation
in condensed soft matter out of equilibrium has attracted
much attention in a broad variety of physical problems �3–6�
and is becoming of much interest in the study of particular
biological systems. In this context, cell membranes are a
classical example of multicomponent and highly labile bio-
logical soft matter generally found under nonequilibrium
conditions, in the presence of chemical reactions, mass trans-
port, and energy flows. With this perspective, pattern forma-
tion in nonequilibrium multicomponent lipid membranes has
been addressed in recent works �7–10�.

More specifically, the study of nonequilibrium pattern
generation in lipid mixtures that form bilayers is particularly
relevant in relation to one of the emergent issues in biophys-
ics: the raft model in cell membranes. According to this hy-
pothesis, lipids in plasma membranes are distributed hetero-
geneously forming small domains, known as rafts, rich in
cholesterol and saturated lipids, embedded in a medium
mostly containing unsaturated lipids �11�. Such structures are
endowed with membrane protein sorting properties and, as a
consequence, with many biological functions �12,13�. Al-
though some aspects of the raft phenomenology still remain
controversial, it is accepted that the preferential packing of
cholesterol and saturated lipids constitutes the thermody-
namic driving force for raft formation �14,15�. On the other
hand, structural and dynamic properties of raft organization
are believed to be dynamically regulated by the cell state and
the specific signals or stimulus that may modify such state
�16–18�. The active nature of raft organization, therefore,
prompts to account not only for the thermodynamics of the

lipid mixture but also for the nonequilibrium aspects affect-
ing the cell membrane, as the transport of its components
across the bilayer.

This scenario has inspired some modelization schemes
�19,20� and we have recently presented a proposal �21� that
is completed and extended in this paper. In our original paper
�21�, we described the thermodynamics of the lipid mixture
by using the regular solution theory and derived the kinetic
equations for the compositional fields supplemented with a
cholesterol recycling term. Here, instead, a more generic
Ginzburg-Landau free-energy formulation is used, allowing a
straightforward implementation in the kinetic equations of a
term mimicking thermal fluctuations, absent in our original
and the other mentioned approaches. Although the main con-
clusions are not altered, the inclusion of fluctuations im-
proves the model results: the obtained nonequilibrium do-
main organization displays a more dynamic aspect �domains
form, change their shape, break up, move, coalesce, etc. in
contrast to the more rigid outcome in Ref. �21�� as it corre-
sponds to a more realistic description of pattern formation in
fluid phases of labile systems. Moreover, this allows us to
study other aspects than domain average size, as the shape of
the emerging structures, as well as their temporal stability
that could be relevant in the biological context.

The aim of the present paper is to formulate and to study
a general model for phase-separating ternary two-
dimensional mixtures under the effect of the continuous re-
cycling of one of the components. We pay special attention
to the size, shape, and stability of the formed domains and
how these properties are affected by both thermodynamic
and transport system conditions. Despite its generic formu-
lation and presentation, we expect this study to be of particu-
lar interest and applicability in the membrane raft issue. The
paper is organized as follows. In Sec. II, the model approach
is described and its kinetic equations are derived. The linear
stability analysis of these equations is performed in Sec. III
and their discretization is presented in Sec. IV. Numerical
simulations are carried out and some representative results
are shown in Sec. V for different recycling rates and molecu-
lar interactions and mobilities. The correspondence of the
model results to biological facts is discussed in Sec. VI. We
conclude with a brief summary in Sec. VII.
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II. MODEL AND KINETIC EQUATIONS

We address the study of a two-dimensional ternary mix-
ture where two of the components �A and B�, being miscible
down to a critical temperature, may undergo phase separa-
tion due to the inclusion of a third molecular species �C�.
Preferential affinity of C for one of the other two compo-
nents �say A� “advances” their demixing at temperatures
higher than the original critical temperature. In relation to
model membranes, A, B and C stand, respectively, for satu-
rated lipids, unsaturated lipids, and cholesterol. The energetic
description of the system follows a Ginzburg-Landau ap-
proach based on two spatial and time-dependent composi-
tional variables, ��r� , t� and c�r� , t�. � corresponds to the dif-
ferential composition of A and B components in the A/B
mixture ���0 indicating predominance of A component�,
whereas c stands for the fraction of the third species C with
respect to a maximum allowed concentration of this compo-
nent in the mixture. According to these two scalar fields, the
free-energy functional per molecule can be written as

f��,c�
kBT

= �1

2
− J��2 +

1

12
�4 − G�c + 4�c −

1

2
�2

+
8

3
�c −

1

2
�4

, �1�

where T is the temperature, kB stands for the Boltzmann
constant, and the parameters J and G are determined by the
interaction between the components in the mixture. The en-
ergetic description in Eq. �1� is introduced here as a generic
phenomenological approach based on the typical Landau ex-
pansion in �2, �4, c2, and c4 terms, plus the simplest �linear�
coupling between the two compositional order parameters.
Although we want to keep the phenomenological and generic
nature of the proposal, it has to be noticed that analogous
free-energy expressions can be derived from the expansion
of a regular solution free-energy expression �21� or from a
coarse-graining procedure of a discrete Ising-like approach
based on two interconnected lattices �see details in Ref.
�15��. In any case, a connection between the interaction Lan-
dau parameters J and G and the microscopic interaction
strengths can be established. Particularly, the parameter J
corresponds to the interaction between A and B components
�J�0 corresponds to preferential affinity for components of
the same kind�, whereas G stands for the differential interac-
tion between A and B components with C molecules �G�0
corresponds to a preferential affinity between C and A com-
ponents�.

The free-energy functional of the whole system can be
expressed as

F��,c� = N0�
S
� f��,c� +

�

2
��� ��2�ds , �2�

where the integration is performed over the membrane area S
and the number of molecules per unit area is represented by
N0. Line tension between A-rich and B-rich phases, �, can be
estimated from Cahn-Hilliard theory �22� as �	Jd0

2, where J
is the typical interaction energy and d0 is the characteristic

interfacial width. Contribution of component C to the line
tension is not considered for simplicity.

Once the energy of the system is determined, the kinetic
evolution of the compositional fields is obtained by applying
the constitutive relations from linear nonequilibrium thermo-
dynamics leading to

��

�t
= M��2�� + ���r�,t� , �3�

�c

�t
= Mc�

2�c − ��c − c̄� + �c�r�,t� , �4�

which obey the conservation laws S−1
S��r� , t�ds= �̄ and
S−1
Sc�r� , t�ds= c̄, with �̄ and c̄ being the constant average
values of the compositional variables. The kinetic coeffi-
cients M� and Mc stand for the molecular mobilities that
have been considered here to be concentration independent.
The chemical potentials, �i, are expressed as the functional
derivatives of the free energy with respect to the correspond-
ing compositional variables

�� =
�F��,c�

��
, �c =

�F��,c�
�c

. �5�

The second term of the kinetic equation �4� deserves special
attention. As anticipated, in this paper, we are interested in
the transient and dynamic structures that arise when phase
separation is halted due to the continuous recycling of one of
the components. The second term of the kinetic equation �4�
accounts for a generic nonequilibrium exchange process of
component C; the parameter � being the recycling frequency
�units of inverse of time�. This nonequilibrium term can be
interpreted as a continuous and homogeneous intake flux of
component C and its continuous release at a rate dependent
of its local concentration �21�. The proposed term is the sim-
plest way to introduce a unique time scale, �−1, for the recy-
cling process keeping a constant total amount of the C com-
ponent in the system. Finally, the last contributions of kinetic
equations �3� and �4� correspond to Gaussian white-noise
terms representing thermal fluctuations, taken to have zero
mean and correlation

��i�r�,t��i�r��,t��� = − 2kBTMi�
2��r� − r�����t − t�� . �6�

In order to simplify the kinetic description, the diffusion
coefficients for both compositional variables are defined as
Di=MikBTN0. From now on, the equations, variables, and
model parameters will be represented in their dimensionless
form. To do so, energy is expressed in kBT units, length is
scaled following x→ x

�/J , and time units are scaled to t

→ tJD�

� . Namely, kBT, d0, and D� are fixed to 1 and Dc→D
=Dc /D�. The dimensionless kinetic equations then read as

��

�t
= �2��1 − 2J�� +

1

3
�3 − Gc − ��2�� + 	�
�, �7�
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�c

�t
= D�2�− G� + 8�c −

1

2
� +

32

3
�c −

1

2
�3� − ��c − c̄�

+ 	c
c, �8�

where 
i�r� , t� is a random variable that follows a Gaussian
distribution with correlation

�
i�r�,t�
i�r��,t��� = − �2��r� − r�����t − t�� �9�

and noise intensities 	�=2 /N0 and 	c=2D /N0.
Since we are particularly interested in lipid membranes

containing cholesterol, we adjust the free-energy parameters
accordingly. Based on the regular solution theory �see, for
example, Ref. �23��, the parameters J and G are related to the
lipid-lipid and cholesterol-lipid differential interactions, �ll
=4J and �cl=G, respectively. Actually, �ll is defined as the
difference between the interaction energy of a pair AB and
the interaction energy of a pair AA �considered equal to the
energy of a pair BB�. �cl accounts for the energy cost of the
formation of a BC pair �for simplicity considered equal to
the energy gain of a pair AC�. These parameters can be ob-
tained from experiments with different lipid systems �24,25�
and a reasonable estimation for our model �with generic satu-
rated and unsaturated lipids� leads to J� �0.1,0.35� and G
� �1.5,3� in kBT energy units. With respect to the average
membrane composition, we have chosen a 2:3 molar ratio of
saturated/unsaturated lipids ��̄=−0.2� and a 30% of choles-
terol in the membrane, which may correspond to a plausible
cell membrane composition �26�. Following a common lat-
tice system to describe lipid and cholesterol mixtures �see,
for example, Refs. �15,21�� based on a triangular lattice for
the lipid mixture and a complementary hexagonal lattice for
cholesterol molecules, the molar fraction for this latter com-
ponent is 2c̄ / �1+2c̄�. This corresponds to c̄=0.214 for the
proposed 30% of cholesterol molar percentage.

III. LINEAR STABILITY ANALYSIS

We can foresee some qualitative results from the linear
stability analysis of the kinetic equations. We test the linear
stability of the stationary homogeneous solution ���r��
= �̄ , c�r��= c̄� by introducing small wave perturbations
�� exp�w�q�t+ iq� ·r�� and �c exp�w�q�t+ iq� ·r�� and linearizing
Eqs. �3� and �4�. This procedure determines the 2�2 linear-
ization matrix L,

�L11 + w�q� L12

L21 L22 + w�q� ����

�c
� = �0

0
� , �10�

with coefficients

L11 = q2��1 − 2J� + �̄2 + �q2� ,

L12 = − Gq2,

L21 = − DGq2,

L22 = Dq2�8 + 32�c̄ −
1

2
�2� + � .

The growth rate w�q� of the perturbations is calculated as
the largest eigenvalue of the Jacobian resulting from the lin-
earization matrix. The solutions of the eigenvalue problem
are given by w�q�=− 1

2 �L11+L22�
1
2
�L11−L22�2+4L12L21.

In the absence of recycling process ��=0�, the system
evolves to two possible equilibrium states depending on the
specific parameter values. For weak-interaction parameters,
the system remains stable to small perturbations and no
phase separation is observed. In this case, all modes have
negative growth rates w�q��0∀q�0 except w�q=0�=0
�see Fig. 1�. When the interaction parameters are above their
critical values, large wavelength modes become unstable,
promoting complete phase separation; namely, there exists a
range of q� �0,q0� where w�q��0, whereas w�q��0 for q
� �q0 ,�� �see Fig. 1�. In this situation, the equality w�q�=0
is fulfilled, q=0 and q=q0 that follows

q0
2 = −

�̄� − 2J

�
+

G2

16c̄��
, �11�

where �̄�=1+ �̄2 and c̄�=1+2c̄�c̄−1�. The expression for q0
can be used to determine the critical values in equilibrium
conditions, Jc,eq,AB and Gc,eq. In the absence of component C,
q0

2�0 only holds if J�Jc,eq,AB, where

Jc,eq,AB =
�̄�

2
. �12�

If component C is added to the system, equilibrium phase
separation occurs for J�Jc,eq,AB when G�Gc,eq and

Gc,eq = 42�Jc,eq,AB − J�c̄�. �13�

The scenario studied in this paper corresponds to a miscible
binary A/B mixture �J�Jc,eq,AB� than undergoes phase sepa-

0.1 0.2 0.3 0.4 0.5 q

-0.003

-0.002

-0.001

0

0.001

0.002

ω
(q

)

q
+

q
-

G = 0, ρ = 0, D = 1
G = 2.5, ρ = 0, D = 1
G = 2.5, ρ = 0.01, D = 1
G = 2.5, ρ = ρ

c
, D = 1

G = 2.5, ρ = 0.01, D = 2
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FIG. 1. �Color online� Growth rate w�q� for different parameter
values. For all curves, J=0.25, �=0.25, D=1, �̄=−0.2, and c̄
=0.214. The case with �=0 and G=0�Gc,eq=2.394 corresponds to
miscibility. When G is increased above its critical value �G=2.5
�Gc,eq=2.394, �=0�, equilibrium phase separation is predicted.
When a moderate recycling rate is applied �G=2.5, �=0.01�, un-
stable modes appear at q� �q− ,q+� leading to finite-size domains.
Faster recycling increases the value of the minimum unstable mode
q−, thus smaller domains are expected. If ���c=0.045, unstable
modes become stable and the miscibility of the mixture is recov-
ered. Larger diffusion parameter D �compare curves for D=1 and
D=2� and/or larger interaction parameter G �compare curves for
G=2.5 and G=2.55� decrease the value of q−, so that larger do-
mains are expected.
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ration due to the inclusion of a third component C, G
�Gc,eq.

In nonequilibrium conditions and moderate recycling
rates, the equality w�q�=0 holds at q=0, q−, and q+. In this
situation, a range of unstable modes, w�q��0, appears at
intermediate wave numbers q� �q− ,q+� �see Fig. 1�. This
means that the phase separation process evolves until segre-
gating domains reach a maximum size, L, determined by the
smallest unstable wave number: L�� /q−. Larger domains
are not attainable since the corresponding modes are stable,
w�q�q−��0. This outcome of the linear stability analysis is
a reflection of the competition between thermodynamic or-
dering and nonequilibrium mixing actions. In the absence of
recycling, phase separation would evolve up to equilibrium;
namely, to the complete segregation of the system into two
separated phases. However, the transport across the bilayer
of the component that promotes phase separation affects the
segregation process introducing a long-range mixing effect
that competes with the short-range ordering thermodynamic
action and eventually prevents complete phase separation. As
a result, actively maintained finite-size segregation domains
appear in the system, their properties being regulated by the
balance between the thermodynamic and transport applied
conditions.

The analytical determination of q− provides, therefore, an
upper limit for the size of nonequilibrium domains in the
stationary state and its dependence on the model parameters.
The analytical expressions for q− and q+ read

q
2 =

�Jc,eq,AB − J�
�

�A A2 −
4��

DGc,eq
2 � , �14�

where

A =
D�G2 − Gc,eq

2 � − ��

DGc,eq
2 . �15�

Equation �14� can be used to predict how the maximum do-
main size depends on the rest of the parameters of the model.
However, the dependence of q− with the rest of the param-
eters in Eq. �14� is not very handy. Instead, we use a simpler
approach that will be useful in the forthcoming discussions.
For q−�1, the q4 factor in L11 can be neglected and a sim-
pler version of Eq. �14� is found

q−
2 	

���̄� − 2J�

D�G2 − 16��̄� − 2J�c̄��
=

2��Jc,eq,AB − J�
D�G2 − Gc,eq

2 �
. �16�

Notice that two important aspects can be extracted from
the latter expression. First, Eq. �16� predicts that q−

2 is pro-
portional to �; namely, the faster recycling rate, the smaller
the predicted maximum size for nonequilibrium structures.
Second, the deeper the mixture quench �larger J and/or G
interaction parameters�, the larger domain predicted size. The
opposite effect of recycling rate and quench depth in Eq. �16�
accounts for the competition between nonequilibrium and
thermodynamic forces, respectively, commented along this
paper.

By looking at Eq. �16� in more detail, additional findings
can be noticed. For example, when the binary A/B mixture is
placed far from its phase boundary �J�Jc,eq,AB�, domains are
predicted to be small. Furthermore, smaller values for the
diffusion parameter D also result in smaller nonequilibrium
structures. Summing up, small domains are obtained when
the recycled component in the mixture is the one with the
largest differential interaction strength and the one with
smaller mobility.

When the recycling rate is higher than a critical value �c,
w�q�=0 is only fulfilled at q=0 and all positive wave-
number modes are stable, w�q�0��0. In this situation, the
nonequilibrium recycling process is so fast that the system is
kinetically kept miscicle. The critical value �c can be ob-
tained from the equality q−=q+ �see Fig. 1�. This means that
the critical value �c is one of the solutions of the equation
A2= 4��

DGc,eq
2 , leading to

�c =
D

�
�Gc,eq − G�2. �17�

IV. SIMULATION DETAILS AND UNITS

The differential kinetic Eqs. �3� and �4� are numerically
solved in a two-dimensional square lattice of N�N sites for
the compositional fields � and c. Periodic boundary condi-
tions are applied. The discretization mesh size is chosen to
be of the order of the characteristic interfacial width d0 and
set to �x=1, whereas the time step is set to �t=0.001. Both
choices assure a good numerical convergence. Simulations
are started from a homogeneous distribution ���r� ,0�
= �̄ , c�r� ,0�= c̄� slightly perturbed with local variations of
1%. The discretized kinetic equations are

�i,j
k+1 = �i,j

k +
�t

2�x2�i,j
2 ��1 − 2J��i,j

k +
1

3
�i,j

k 3 −
�

�x2�i
2�i,j

k

− Gci,j
k � +	�

�t

�x2�� i,j
��,i,j
k , �18�

ci,j
k+1 = ci,j

k +
�t

2�x2�i
2�− Gci,j

k + 8�ci,j
k −

1

2
� +

32

3
�ci,j

k −
1

2
�3�

+	c
�t

�x2�� i,j
�c,i,j
k . �19�

The compositional fields are defined in the sites i , j
� �1,N�. The temporal integration is performed by succes-
sively iterating the discretized kinetic equations, with k being
the corresponding iteration index. The total time lapse up to
iteration k is then t=k�t. The discretized Laplacian operator
is defined for a generic function y as

�i,j
2 yi,j = yi+1,j + yi−1,j + yi,j+1 + yi,j−1 − 4yi,j . �20�

The discretized divergence operator applied on the noise vec-
tor v� i,j = �vi,j

�1� ,vi,j
�2�� reads
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�� i,j�vi,j
�1�,vi,j

�2�� =
vi+1,j

�1� − vi−1,j
�1�

2
+

vi,j+1
�2� − vi,j−1

�2�

2
, �21�

being 
�1� and 
�2� independent Gaussian random variables
generated every iteration at each lattice site. This expression
fulfills the fluctuation-dissipation relation for the thermal
noise in the discretized kinetic equations.

For the case of lipid membranes, we choose d0 of the
order of a few lipid molecular distances in the membrane
plane, d0	5 nm. Since we have chosen �x=d0 and accord-
ing to usual lipid membrane areas per molecule, each dis-
cretization site contains about 50 molecules, validating the
coarse-grained nature of the compositional order parameters.
The choice of �x=1 fixes the simulation length units to 5
nm. The time simulation units can be extracted from the
value of the diffusion coefficient. Since D�=1 and for a ge-
neric membrane lipid molecule in a bilayer the diffusivity is
of the order of �m2 /s �26�, this implies �t=2.5�10−8 s.
Simulations in this paper are performed in lattices of N
=256 up to 108 iterations that correspond to 1.28
�1.28 �m2 systems simulated for 2.5 s.

V. NUMERICAL RESULTS

One of the aims of this paper is to analyze the structural
and dynamic characteristics of the domains that are formed
when the mixture is quenched and maintained out of equilib-
rium by the recycling process. We are interested in the size,
shape, and stability of those domains and how those features
correlate with the different parameters of the model. The
basic tools used to determine domain boundaries, size,
roughness, and stability are described here.

Correlation functions are common numerical instruments
to quantify characteristic time and length scales in pattern
formation phenomena. The stability of domains can be esti-
mated by computing the temporal correlation function once
the system has already reached its stationary state. The nor-
malized temporal correlation function for the � field reads

T��� =
���r�,t���r�,t + ��� − ���r�,t��2

���r�,t�2� − ���r�,t��2 , �22�

where the brackets stand for an average over positions r� and
time t. Stable domains are identified by temporal correlation
functions that hardly decay with time, whereas transient and
highly dynamic structures yield to temporal correlation func-
tions that quickly drop to zero. In order to monitor the spatial
pattern evolution, we compute the normalized spatial corre-
lation function for each compositional variable at different
times. The normalized correlation function for the � variable
reads

C�r�,t� =
���r��,t���r�� + r�,t�� − ���r��,t��2

���r��,t�2� − ���r��,t��2 , �23�

where the brackets correspond to an average over positions
r��. An usual estimation for the characteristic length of the
developed patterns at time t is given by the smallest distance
r=R that satisfies C�R , t�=0. We can define analogous time
and spatial correlation functions for the c field.

A more detailed characterization of the stationary do-
mains is provided by the following additional analysis that
takes into account the presence of thermal fluctuations. First,
thermal noise level is quantified as the standard deviation of
the compositional fields in a simulation without interaction
between the system components �J=G=0�. Segregating do-
mains are then defined as all interconnected lattice sites with
a composition variable 3 times larger than the noise level.
Once the domains have been delimited, domain area distri-
bution histograms and mean domain linear sizes, L=area,
can be computed. Another feature that can be analyzed with
this procedure is the roughness of the emerging domains.
Particularly, the roughness index of a domain i��i� is com-
puted as the square of the ratio between the perimeter of the
domain �Pi� and the perimeter of the equivalent circle with

the same area �Ai�, �i=
Pi

2

4�Ai
. A circular domain has a rough-

ness index �=1 whereas more irregular structures are char-
acterized by ��1.

A. Role of the recycling frequency

Numerical simulations follow the predictions of the linear
stability analysis. First, we analyze the effect of the param-
eter �. Two sets of simulations varying the recycling fre-
quency have been performed for simulations with �̄=−0.2,
c̄=0.214, J=0.25, �=0.25, and D=1: �=0.001, 0.005, 0.01,
0.02, and 0.04 for G=2.5 and �=0.005, 0.01, 0.02, 0.04, and
0.15 for G=3. All these attempted recycling frequencies are
smaller than the value of the corresponding �c. The temporal
evolution of the characteristic length R computed from the
spatial correlation functions is presented in Fig. 2. The simu-
lations that do not consider recycling �equilibrium phase
separation� display a continuous pattern growth, whereas in
most nonequilibrium cases ���0�, a stabilization of the pat-
tern to a stationary length is observed. Only the cases with
very slow recycling still display domain growth at late times,
which means that the stationary state has not been already
achieved. As an example to illustrate pattern evolution, in
Fig. 3, we present some pattern snapshots of the numerical
simulations for the case G=2.5 and different recycling rates.
Observe, as a general behavior, how the system is segregated
in coarsening domains and how the coarsening process is
halted at smaller structures as the recycling frequency is in-
creased.

Analysis of the occurrence area and roughness histograms
gives more specific information on the structure of the sta-
tionary domains and its dependence on the exchange rate �.
The domain area distributions have been computed for the
last snapshots of each simulation �stationary state� and have
been plotted in Fig. 4. It is observed that for a given inter-
action G, the average domain area diminishes as it also does
its dispersion when the exchange process is made faster. The
stationary mean domain size, Lst, corresponds to the square
root of the mean domain area computed for each area distri-
bution and their values depend, as expected, on the applied
exchange rate applied. Particularly, larger � favors smaller
domains. A plot of the inverse of the stationary sizes 1 /Lst is
presented in Fig. 5 as a function of �1/2. Notice that the
prediction in Eq. �16� is clearly fulfilled by our numerical
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simulations with respect to the dependence on ��q−��1/2�.
Only the cases with the largest � values seem to slightly
deviate from the linear behavior. This can be understood
since the larger the �, the larger the q−, whereas q−�1 is
assumed in Eq. �16�. With respect to the domain roughness,
increasing � results in rougher domains �see the insets in Fig.
4�.

The stability of the generated domains is analyzed by
means of the temporal correlation functions plotted in Fig. 6
for different values of �. It is clearly observed how faster
recycling rates make domains become less stable. In sum-
mary, for a given set of parameters, the effect of increasing
the recycling frequency favors the generation of monodis-
perse small, irregular, and unstable domains, whereas slow
recycling forms polydisperse large, rounded, and stable
structures. Simulations also show how the system can dy-
namically adapt its lateral organization to changes in the
speed of the exchange process. A system that is successively
simulated under different recycling rates adjusts accordingly
its lipid distribution �27�. For example, if recycling is absent,
domains grow up to complete phase separation. At this point,

3.5 4 4.5 5
log

10
(t)

0.8

1

1.2

1.4
lo

g 10
(R

)
ρ = 0.04
ρ = 0.02
ρ = 0.01
ρ = 0.005
ρ = 0.001
ρ = 0

3 3.5 4 4.5 5
log

10
(t)

0.6

0.8

1

1.2

1.4

lo
g 10

(R
)

ρ = 0.15
ρ = 0.04
ρ = 0.02
ρ = 0.01
ρ = 0.005
ρ = 0

(b)

(a)

FIG. 2. �Color online� Log-log temporal evolution of character-
istic length, R, for different recycling rates. The other parameters
are �̄=−0.2, c̄=0.214, D=1, �=0.25, and J=0.25. �a� G=2.5. �b�
G=3. Each curve is computed as the average over three simulations
obtained from different initial random distributions.

FIG. 3. Temporal evolution of the simulation patterns in a 256
�256 system for different recycling rates. The other parameters are
�̄=−0.2, c̄=0.214, D=1, �=0.25, J=0.25, and G=2.5. Each snap-
shot corresponds to a grayscale representation of the parameter �.
Darker regions correspond to higher values of this variable. The
snapshots for c follow the same distribution �not shown�. Only the
last snapshots for the nonequilibrium cases ���0� are practically
stationary.

200 400 600
Area

0

0.1

0.2

0.3

0.4

0.5

O
cc

ur
re

nc
e

ρ = 0.04
ρ = 0.02
ρ = 0.01
ρ = 0.005
ρ = 0.001

0 0.02 0.04
ρ

2.4

2.6

2.8

3

3.2

3.4

<
Ω

>

0 200 400 600
Area

0

0.1

0.2

0.3

0.4

0.5

0.6

O
cc

ur
re

nc
e

ρ = 0.15
ρ = 0.04
ρ = 0.02
ρ = 0.01
ρ = 0.005

0 0.05 0.1 0.15 0.2
ρ

1.6

1.62

1.64

1.66

1.68

<
Ω

>

(b)

(a)

FIG. 4. �Color online� Domain area distributions for different
values of �. �a� G=2.5. �b� G=3. The values of the other parameters
are �̄=−0.2, c̄=0.214, �=0.02, D=1, �=0.25, and J=0.25. Inset:
mean roughness coefficient ��� as a function of �.
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FIG. 5. �Color online� Inverse of the stationary domain linear
size 1 /Lst as a function of �1/2 for G=2.5 �circles� and G=3
�squares�. The other parameters are �̄=−0.2, c̄=0.214, D=1, �
=0.25, and J=0.25. The linear dependence predicted in Eq. �16� is
captured.
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if fast recycling is applied, small and transient domains are
recovered �27�.

A final consideration has to be done with respect to the
cases with a high recycling rate ���c. In this situation, nu-
merical simulations without thermal fluctuations result in an
homogeneous final distribution for the compositional vari-
ables � and c, as it is predicted by the linear stability analy-
sis �all modes are stable�. However, the presence of thermal
fluctuations on the kinetic equations may lead to the forma-
tion of very small and unstable domains in the numerical
simulations. The size and stability of these structures, how-
ever, may be of relevance when �, although larger, is close to
the critical value �c. In this case, certain modes of the order
of q=q−=q+ are only slightly stable and therefore can be
eventually and locally excited by thermal fluctuations lead-
ing to domains with a significant size and stability �28�. This
scenario will be addressed in more detail in a future work.

B. Modifying the thermodynamic conditions

The effects of modifying the thermodynamic conditions
�namely, changes in the distance to the phase boundary of the
mixture� are analyzed by varying the interaction energy G
while keeping constant the remaining parameters. This
analysis can be performed by comparing the data for G
=2.5 and G=3 in former Figs. 2 and 4–6 at equal values of
�. Doing so, it is observed that an increment of the interac-
tion energy G �namely, a deeper mixture quench� results in
larger, more circular, and more stable domains. Contrarily,
when the separating mixture is closer to the phase boundary
�smaller value of G, but still larger than Gc,eq�, the mixing
effect due to the exchange process makes the domains
smaller and more irregular and unstable. The competition
between thermodynamics and nonequilibrium is again visu-

alized with this comparison and the prediction of the linear
stability analysis in Eq. �16� is also captured in the numerical
simulations.

C. Effect of diffusion coefficient

Finally, the effect of the diffusion parameter is discussed.
The parameter D was defined as the relative diffusivity of the
C component respect to that of the A and B species �D
=Dc /D��. We have run simulations for D=0.2, 0.5, 1, 2, and
5, fixing �=0.02, �̄=−0.2, c̄=0.214, �=0.25, J=0.25, and
G=2.5. Area domain distributions and domain roughness are
plotted in Fig. 7 and the behavior of the stationary domain
linear size is presented in Fig. 8. From these figures, it is
clear that larger D favors larger �as predicted in Eq. �16�� and
more rounded domains. Moreover, increasing D also results
in more stable domains as it can be observed in Fig. 9 where
the time-correlation functions are shown. Actually, the effect
of D is analogous to that of G in the previous section. Notice
that the case of D=0.2 corresponds to the situation com-
mented above where the system is dynamically kept miscible
�G�Gc,eq and ���c� but thermal fluctuations lead to do-
mains with a significant size and stability �28�.

VI. SPECULATIONS ON THE CORRESPONDENCE
TO RAFT PHENOMENA

As anticipated, the proposed model and its results may be
of interest in the study of raft formation in plasmatic cell
membranes. Rafts correspond to lipid liquid-ordered nan-
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odomains rich in saturated lipids and cholesterol, floating in
a liquid-disordered phase rich in unsaturated lipid species.
Recent experiments �16,17� have revealed that raft organiza-
tion is extremely sensitive to cholesterol homeostasis. Cho-
lesterol is continuously incorporated into the membrane from
the endoplasmatic reticulum and released to the external cir-
culation �31�. According to this scenario, the lipid mixture
phase-separates due to the presence of cholesterol that, in
turn, is dynamically recycled or exchanged with the mem-
brane environment. Therefore, raft formation may fit the sce-
nario described with our model.

However, some caution must be exercised when compar-
ing the spatial and temporal scales of the numerical examples
provided in this paper so far. For instance, the case with G
=2.5 in Fig. 5 leads to nonequilibrium domains of
	62.5 nm for �=40 s−1 and 	38.5 nm for �=400 s−1.
Both size values are in good agreement with the typical raft
characteristic lengths, but the estimations of the values for
the recycling frequencies are much larger than the biological
values �of the order of s−1� �32�. Despite this discrepancy, we
also showed that similar small domain sizes could be at-
tained for smaller recycling frequencies if the mixture were
placed closer enough to the phase boundary and, actually,
this is the accepted situation for lipid mixtures in cell mem-
branes �16�. Therefore, our model may fit raft formation phe-
nomena in the limit of close proximity to the phase bound-
ary.

It has to be noticed also that the formulation of the model
has been presented so far from a general viewpoint, so that in
order to approach the biological context of raft formation in
cell membranes, some particular aspects have to be taken
into account. First, the fact that membrane components have
a mobility that depends on the ordered nature of the lipid
phase where they reside. On this respect, lipid mobilities can
be up to 10 times larger in the liquid-disordered phase �poor
in cholesterol� than in the liquid-ordered phase that forms
raft domains �rich in cholesterol�. To incorporate this particu-
larity of the biological context, one may use lipid and cho-
lesterol diffusivities that depend on the cholesterol composi-
tion in a simple functional manner such as

D��c� =
D�,0

1 + �c
, Dc�c� =

Dc,0

1 + �c
. �24�

This choice implies that the diffusion constant of a lipid or
cholesterol molecules is 1+� times smaller in a fully or-

dered phase �maximum cholesterol concentration c=1� than
in a disordered phase �c=0�. The linear stability analysis of
the kinetic equations once this modification is considered
leads to a correction for the smallest unstable wave number
q− in Eq. �16� that replaces the parameter D by D

1+�c̄ �where
D is again the fraction of cholesterol and lipid diffusion co-
efficients Dc,0 /D�,0�. So, this correction goes in favor of the
formation of smaller steady-state domains.

Another improvement to be considered is a more realistic
description of the cholesterol transport across the membrane.
The recycling contribution in Eq. �4� corresponds to the sim-
plest generic choice to introduce a nonequilibrium mass
transport process in the kinetic equations, but it does not
fully describe the real biology of the cholesterol transport
through a living cell membrane. Although what we call the
“real biology” of the problem is rather complicated and still
far from being understood, a strong simplification indicates
that cholesterol intake involves the fusion to the membrane
of small cholesterol-rich liposomes from its cytoplasmatic
side, whereas efflux of cholesterol mainly takes place by the
release of single sterol molecules to externally circulating
lipoproteins �31�. Therefore, on what respects to the choles-
terol influx, we should consider the incorporation of small
pieces of the membrane instead of the proposed homoge-
neous cholesterol influx. We have to admit, however, that our
continuum approach does not allow such possibility and is
only correct in the limit of sufficiently small intake lipo-
somes. A proposal that considers the exchange of membrane
pieces has been presented by Turner et al. in Ref. �20�,
whose approach follows a purely temporal aggregation
scheme without spatial resolution, quite different from ours
but rather complementary. With respect to cholesterol efflux,
a limitation of the generic formulation in Eq. �4� is that the
cholesterol release frequency is constant ���. In a lipid mem-
brane, cholesterol is more bound to the membrane in the
ordered regions where cholesterol is abundant, so it is ex-
pected that the release frequency of this component has to be
smaller in cholesterol-rich domains. To account for this ef-
fect, we may consider the following transport terms in Eq.
�4�:

ċ = ¯ + �in − �out�c�c + ¯ , �25�

where �in is the cholesterol influx rate and �out�c� is an efflux
frequency that depends on the cholesterol composition in a
simple functional manner such as

�out�c� =
�0

1 + �c
. �26�

This choice implies that the release frequency is 1+� times
smaller in a fully ordered phase �maximum cholesterol con-
centration c=1� than in a disordered phase �c=0�. The linear
stability analysis of the kinetic equations once this modifica-
tion is considered leads to a correction for the smallest un-
stable wave number q− in Eq. �16� that replaces the param-
eter � by

�0

�1+�c̄�2 , where now c̄=
�in

�0−�in� . So, this correction
goes in favor of the formation of larger steady-state domains.
Summing up the two effects, one has that the corrected ex-
pression for the smaller unstable wave number q− that pre-
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dicts the maximum size of the steady-state domains reads

q−
2 	

2�0�1 + �c̄��Jc,eq,AB − J�
D�1 + �c̄�2�G2 − Gc,eq

2 �
. �27�

A simple estimation for a decrease of up to 10 times of both
mobilities and efflux frequency when going from c=0 to c
=1 results in a predicted size for the nonequilibrium domains
1.7 times larger than without the corrections, so still in the
same length scale. In any case, we remind here that condi-
tions of application of the proposal �independently of the
improved descriptions of mobilities and cholesterol fluxes
introduced in the latter paragraph� are always limited to the
case of sufficiently close proximity to the miscibility bound-
ary. The intrinsic simplicity of the model scheme does not
allow stating a more general applicability.

Despite these considerations, our model results are con-
sistent with a hierarchical picture of an active lipid organiza-
tion at different length scales that are exploited for distinct
functions �33,34�. The existence of small, transient lipid or-
dered domains may induce short-lifetime protein interactions
necessary to facilitate specific biochemical reactions in the
membrane. Larger and stabilized rafts, resulting from the
coalescence of small and temporary domains, may be re-
quired for protein trafficking, endocytosis, and signaling.
Such picture requires taking into account the dynamic nature
of lipid domains that may dynamically change under specific
signals or stimulus, contributing to the diversification of cel-
lular responses �16–18�.

Also in the context of biomembranes, a similar effect due
to integral proteins has been suggested to regulate the size of
segregated lipid domains �35–37�. The idea is based on the
fact that the presence of active inclusions in a binary sepa-
rating mixture reorganizes its spatial configuration by main-
taining a steady-state organization in finite-size domains
�35,36�. Such active impurities can be viewed as on/off pro-
teins inserted in a separating lipid mixture, where activated
and deactivated proteins prefer a particular lipid component.
Analogously to our proposal, the rate of protein conversion
determines the size of the steady-state domains �37�.

VII. SUMMARY

We have presented the study of a nonequilibrium model
for a ternary phase-separating mixture in a two-dimensional
system where the component that promotes phase separation
is continuously recycled. In this scenario, nonequilibrium re-
cycling process halts the segregation of components and
leads to the formation of finite-size domains. In this paper,
the approach presented in our earlier work �21� has been
completed and expanded with the inclusion of thermal fluc-
tuations that provide a more dynamic picture. In the station-
ary state, domains form, diffuse, break up, and coalesce. We
have analyzed not only the size but the shape and stability of
the segregating structures as a function of the thermody-
namic conditions of the mixture and the kinetics of the trans-
port processes acting on it.

Our main conclusions can be summarized as follows. In-
creasing the recycling rate, decreasing the mobility of the
exchanged component, and approaching the mixture to its
phase boundary act in the same direction: domains become
smaller, more irregular, and less stable. In the opposite situ-
ations, larger, more circular, and more stable domains are
formed. We have also identified situations where even in the
absence of phase separation, thermal fluctuations promote a
certain organization in very small, irregular, and short-lived
domains. This observation could be connected to the NMR
detection of very small and transient domains in miscible
ternary lipid vesicles �29,30� and will be addressed in more
detail in a future work. Finally, the application of the model
to the study of raft formation in the plasmatic cell membrane
has been discussed and we have concluded that our model
results may fit raft phenomena if the studied lipid mixture is
in the limit of close proximity to the miscibility boundary.
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